Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592744

RESUMEN

The emergence of immunotherapy has marked a new epoch in cancer treatment, presenting substantial clinical benefits. Extracellular vesicles (EVs), as natural nanocarriers, can deliver biologically active agents in cancer therapy with their inherent biocompatibility and negligible immunogenicity. However, natural EVs have limitations such as inadequate targeting capability, low loading efficacy, and unpredictable side effects. Through progress in genetic engineering, EVs have been modified for enhanced delivery of immunomodulatory agents and antigen presentation with specific cancer targeting ability, deepening the role of EVs in cancer immunotherapy. This review briefly describes typical EV sources, isolation methods, and adjustable targeting of EVs. Furthermore, this review highlights the genetic engineering strategies developed for delivering immunomodulatory agents and antigen presentation in EV-based systems. The prospects and challenges of genetically engineered EVs as cancer immunotherapy in clinical translation are also discussed.

2.
Sensors (Basel) ; 24(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38544163

RESUMEN

Crowd movement analysis (CMA) is a key technology in the field of public safety. This technology provides reference for identifying potential hazards in public places by analyzing crowd aggregation and dispersion behavior. Traditional video processing techniques are susceptible to factors such as environmental lighting and depth of field when analyzing crowd movements, so cannot accurately locate the source of events. Radar, on the other hand, offers all-weather distance and angle measurements, effectively compensating for the shortcomings of video surveillance. This paper proposes a crowd motion analysis method based on radar particle flow (RPF). Firstly, radar particle flow is extracted from adjacent frames of millimeter-wave radar point sets by utilizing the optical flow method. Then, a new concept of micro-source is defined to describe whether any two RPF vectors originated from or reach the same location. Finally, in each local area, the internal micro-sources are counted to form a local diffusion potential, which characterizes the movement state of the crowd. The proposed algorithm is validated in real scenarios. By analyzing and processing radar data on aggregation, dispersion, and normal movements, the algorithm is able to effectively identify these movements with an accuracy rate of no less than 88%.

3.
bioRxiv ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38496456

RESUMEN

We present single-molecule labeling and localization microscopy (SMLLM) using dye-conjugated phalloidin to achieve enhanced superresolution imaging of filamentous actin (F-actin). We demonstrate that the intrinsic phalloidin dissociation enables SMLLM in an imaging buffer containing low concentrations of dye-conjugated phalloidin. We further show enhanced single-molecule labeling by chemically promoting phalloidin dissociation. Two benefits of phalloidin-based SMLLM are better preservation of cellular structures sensitive to mechanical and shear forces during standard sample preparation and more consistent F-actin quantification at the nanoscale. In a proof-of-concept study, we employed SMLLM to super-resolve F-actin structures in U2OS and dendritic cells (DCs) and demonstrate more consistent F-actin quantification in the cell body and structurally delicate cytoskeletal proportions, which we termed membrane fibers, of DCs compared to direct stochastic optical reconstruction microscopy (dSTORM). Using DC2.4 mouse dendritic cells as the model system, we show F-actin redistribution from podosomes to actin filaments and altered prevalence of F-actin-associated membrane fibers on the culture glass surface after lipopolysaccharide exposure. While our work demonstrates SMLLM for F-actin, the concept opens new possibilities for protein-specific single-molecule labeling and localization in the same step using commercially available reagents.

4.
Bioeng Transl Med ; 9(1): e10600, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38193121

RESUMEN

The covalent attachment of polyethylene glycol (PEG) to therapeutic agents, termed PEGylation, is a well-established and clinically proven drug delivery approach to improve the pharmacokinetics and pharmacodynamics of drugs. Specifically, PEGylation can improve the parent drug's solubility, extend its circulation time, and reduce its immunogenicity, with minimal undesirable properties. PEGylation technology has been applied to various therapeutic modalities including small molecules, aptamers, peptides, and proteins, leading to over 30 PEGylated drugs currently used in the clinic and many investigational PEGylated agents under clinical trials. Here, we summarize the diverse types of PEGylation strategies, the key advantages of PEGylated therapeutics over their parent drugs, and the broad applications and impacts of PEGylation in clinical settings. A particular focus has been given to the size, topology, and functionalities of PEG molecules utilized in clinically used PEGylated drugs, as well as those under clinical trials. An additional section has been dedicated to analyzing some representative PEGylated drugs that were discontinued at different stages of clinical studies. Finally, we critically discuss the current challenges faced in the development and clinical translation of PEGylated agents.

5.
Bioeng Transl Med ; 9(1): e10588, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38193112

RESUMEN

Vaccines are an important tool in the rapidly evolving repertoire of immunotherapies in oncology. Although cancer vaccines have been investigated for over 30 years, very few have achieved meaningful clinical success. However, recent advances in areas such antigen identification, formulation development and manufacturing, combination therapy regimens, and indication and patient selection hold promise to reinvigorate the field. Here, we provide a timely update on the clinical status of cancer vaccines. We identify and critically analyze 360 active trials of cancer vaccines according to delivery vehicle, antigen type, indication, and other metrics, as well as highlight eight globally approved products. Finally, we discuss current limitations and future applications for clinical translation of cancer vaccines.

6.
Adv Drug Deliv Rev ; 204: 115143, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38008185

RESUMEN

Since the inception of the concept of "magic bullet", nanoparticles have evolved to be one of the most effective carriers in drug delivery. Nanoparticles improve the therapeutic efficacy of drugs offering benefits to treating various diseases. Unlike free drugs which freely diffuse and distribute through the body, nanoparticles protect the body from the drug by reducing non-specific interactions while also improving the drug's pharmacokinetics. Despite acquiring some FDA approvals, further clinical application of nanoparticles is majorly hindered by its limited ability to overcome biological barriers resulting in uncontrolled biodistribution and high clearance. The use of cell-inspired systems has emerged as a promising approach to overcome this challenge as cells are biocompatible and have improved access to tissues and organs. One of such is the hitchhiking of nanoparticles to circulating cells such that they are recognized as 'self' components evading clearance and resulting in site-specific drug delivery. In this review, we discuss the concept of nanoparticle cellular hitchhiking, highlighting its advantages, the principles governing the process and the challenges currently limiting its clinical translation. We also discuss in situ hitchhiking as a tool for overcoming these challenges and the considerations to be taken to guide research efforts in advancing this promising technology.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas , Humanos , Distribución Tisular , Preparaciones Farmacéuticas , Nanomedicina
7.
Sensors (Basel) ; 23(21)2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37960689

RESUMEN

This paper proposes a fast direction of arrival (DOA) estimation method based on positive incremental modified Cholesky decomposition atomic norm minimization (PI-CANM) for augmented coprime array sensors. The approach incorporates coprime sampling on the augmented array to generate a non-uniform, discontinuous virtual array. It then utilizes interpolation to convert this into a uniform, continuous virtual array. Based on this, the problem of DOA estimation is equivalently formulated as a gridless optimization problem, which is solved via atomic norm minimization to reconstruct a Hermitian Toeplitz covariance matrix. Furthermore, by positive incremental modified Cholesky decomposition, the covariance matrix is transformed from positive semi-definite to positive definite, which simplifies the constraint of optimization problem and reduces the complexity of the solution. Finally, the Multiple Signal Classification method is utilized to carry out statistical signal processing on the reconstructed covariance matrix, yielding initial DOA angle estimates. Experimental outcomes highlight that the PI-CANM algorithm surpasses other algorithms in estimation accuracy, demonstrating stability in difficult circumstances such as low signal-to-noise ratios and limited snapshots. Additionally, it boasts an impressive computational speed. This method enhances both the accuracy and computational efficiency of DOA estimation, showing potential for broad applicability.

8.
Acta Pharm Sin B ; 13(6): 2369-2382, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37425053

RESUMEN

Pulmonary hypertension (PH) is an insidious pulmonary vasculopathy with high mortality and morbidity and its underlying pathogenesis is still poorly delineated. The hyperproliferation and apoptosis resistance of pulmonary artery smooth muscle cells (PASMCs) contributes to pulmonary vascular remodeling in pulmonary hypertension, which is closely linked to the downregulation of fork-head box transcriptional factor O1 (FoxO1) and apoptotic protein caspase 3 (Cas-3). Here, PA-targeted co-delivery of a FoxO1 stimulus (paclitaxel, PTX) and Cas-3 was exploited to alleviate monocrotaline-induced pulmonary hypertension. The co-delivery system is prepared by loading the active protein on paclitaxel-crystal nanoparticles, followed by a glucuronic acid coating to target the glucose transporter-1 on the PASMCs. The co-loaded system (170 nm) circulates in the blood over time, accumulates in the lung, effectively targets the PAs, and profoundly regresses the remodeling of pulmonary arteries and improves hemodynamics, leading to a decrease in pulmonary arterial pressure and Fulton's index. Our mechanistic studies suggest that the targeted co-delivery system alleviates experimental pulmonary hypertension primarily via the regression of PASMC proliferation by inhibiting cell cycle progression and promoting apoptosis. Taken together, this targeted co-delivery approach offers a promising avenue to target PAs and cure the intractable vasculopathy in pulmonary hypertension.

9.
Bioeng Transl Med ; 8(4): e10536, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37476062

RESUMEN

Digital therapeutics are emerging as a new form of therapeutic interventions. Unlike conventional therapeutics, digital therapeutics deliver interventions directly to patients using an evidence-based, clinically evaluated software to treat, manage, or prevent diseases. Digital therapeutics manifest in diverse forms such as web-based applications, mobile applications on smart devices, virtual reality, and video games. As its own product category for FDA approval, digital therapeutics can function as stand-alone treatments or in combination with conventional therapeutics to improve adherence and/or efficacy. Here, we review the clinical landscape of digital therapeutics. We summarize FDA-approved products and their clinical use, overview >300 ongoing clinical trials, and discuss challenges for their clinical translation and strategies to overcome the same.

10.
Chem Soc Rev ; 52(14): 4672-4724, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37338993

RESUMEN

The biomedical use of nanoparticles (NPs) has been the focus of intense research for over a decade. As most NPs are explored as carriers to alter the biodistribution, pharmacokinetics and bioavailability of associated drugs, the delivery of these NPs to the tissues of interest remains an important topic. To date, the majority of NP delivery studies have used tumor models as their tool of interest, and the limitations concerning tumor targeting of systemically administered NPs have been well studied. In recent years, the focus has also shifted to other organs, each presenting their own unique delivery challenges to overcome. In this review, we discuss the recent advances in leveraging NPs to overcome four major biological barriers including the lung mucus, the gastrointestinal mucus, the placental barrier, and the blood-brain barrier. We define the specific properties of these biological barriers, discuss the challenges related to NP transport across them, and provide an overview of recent advances in the field. We discuss the strengths and shortcomings of different strategies to facilitate NP transport across the barriers and highlight some key findings that can stimulate further advances in this field.


Asunto(s)
Nanopartículas , Neoplasias , Embarazo , Humanos , Femenino , Portadores de Fármacos/uso terapéutico , Distribución Tisular , Placenta/patología , Neoplasias/tratamiento farmacológico , Sistemas de Liberación de Medicamentos
11.
Sensors (Basel) ; 23(11)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37299830

RESUMEN

This paper proposes a human activity recognition (HAR) method for frequency-modulated continuous wave (FMCW) radar sensors. The method utilizes a multi-domain feature attention fusion network (MFAFN) model that addresses the limitation of relying on a single range or velocity feature to describe human activity. Specifically, the network fuses time-Doppler (TD) and time-range (TR) maps of human activities, resulting in a more comprehensive representation of the activities being performed. In the feature fusion phase, the multi-feature attention fusion module (MAFM) combines features of different depth levels by introducing a channel attention mechanism. Additionally, a multi-classification focus loss (MFL) function is applied to classify confusable samples. The experimental results demonstrate that the proposed method achieves 97.58% recognition accuracy on the dataset provided by the University of Glasgow, UK. Compared to existing HAR methods for the same dataset, the proposed method showed an improvement of about 0.9-5.5%, especially in the classification of confusable activities, showing an improvement of up to 18.33%.


Asunto(s)
Actividades Humanas , Radar , Humanos , Reconocimiento en Psicología
12.
Bioeng Transl Med ; 8(3): e10516, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37206230

RESUMEN

Uncontrolled bleeding is a life-threatening emergency that requires immediate intervention. Currently available on-site bleeding interventions largely rely on the use of tourniquets, pressure dressing, and other topical hemostatic agents, which can only treat bleeding injuries that are known, accessible, and potentially compressible. Synthetic hemostats that are stable at room temperature, easy to carry, field-usable, and able to stop internal bleeding at multiple or unknown sources, are still lacking. We recently developed a hemostatic agent via polymer peptide interfusion (HAPPI), which can selectively bind to activated platelets and injury sites after intravascular administration. Here we report that HAPPI is highly effective in treating multiple lethal traumatic bleeding conditions in normal as well as hemophilia models via either systemic administration or topical application. In a rat liver traumatic model, intravenous injection of HAPPI resulted in a significant decrease in blood loss and a four-fold reduction in mortality rate within 2 h after injury. When applied topically on liver punch biopsy wounds in heparinized rats, HAPPI achieved a 73% of reduction in blood loss and a five-fold increase in survival rate. HAPPI also exhibited hemostatic efficacy in hemophilia A mice by reducing blood loss. Further, HAPPI worked synergistically with rFVIIa to induce immediate hemostasis and 95% reduction in total blood loss compared to the saline-treated group in hemophelia mice models. These results demonstrate that HAPPI is a promising field-usable hemostatic agent for a broad range of different hemorrhagic conditions.

13.
Acta Pharm Sin B ; 13(5): 1789-1827, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37250173

RESUMEN

Cellular nanovesicles which are referred to as cell-derived, nanosized lipid bilayer structures, have emerged as a promising platform for regulating immune responses. Owing to their outstanding advantages such as high biocompatibility, prominent structural stability, and high loading capacity, cellular nanovesicles are suitable for delivering various immunomodulatory molecules, such as small molecules, nucleic acids, peptides, and proteins. Immunomodulation induced by cellular nanovesicles has been exploited to modulate immune cell behaviors, which is considered as a novel cell-free immunotherapeutic strategy for the prevention and treatment of diverse diseases. Here we review emerging concepts and new advances in leveraging cellular nanovesicles to activate or suppress immune responses, with the aim to explicate their applications for immunomodulation. We overview the general considerations and principles for the design of engineered cellular nanovesicles with tailored immunomodulatory activities. We also discuss new advances in engineering cellular nanovesicles as immunotherapies for treating major diseases.

14.
Adv Sci (Weinh) ; 10(18): e2207488, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37072673

RESUMEN

Cell-based therapies comprising the administration of living cells to patients for direct therapeutic activities have experienced remarkable success in the clinic, of which macrophages hold great potential for targeted drug delivery due to their inherent chemotactic mobility and homing ability to tumors with high efficiency. However, such targeted delivery of drugs through cellular systems remains a significant challenge due to the complexity of balancing high drug-loading with high accumulations in solid tumors. Herein, a tumor-targeting cellular drug delivery system (MAGN) by surface engineering of tumor-homing macrophages (Mφs) with biologically responsive nanosponges is reported. The pores of the nanosponges are blocked with iron-tannic acid complexes that serve as gatekeepers by holding encapsulated drugs until reaching the acidic tumor microenvironment. Molecular dynamics simulations and interfacial force studies are performed to provide mechanistic insights into the "ON-OFF" gating effect of the polyphenol-based supramolecular gatekeepers on the nanosponge channels. The cellular chemotaxis of the Mφ carriers enabled efficient tumor-targeted delivery of drugs and systemic suppression of tumor burden and lung metastases in vivo. The findings suggest that the MAGN platform offers a versatile strategy to efficiently load therapeutic drugs to treat advanced metastatic cancers with a high loading capacity of various therapeutic drugs.


Asunto(s)
Sistemas de Liberación de Medicamentos , Melanoma , Humanos , Melanoma/tratamiento farmacológico , Macrófagos , Metales , Microambiente Tumoral
15.
Adv Drug Deliv Rev ; 197: 114840, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37088403

RESUMEN

Cells have emerged as a promising new form of drug delivery carriers owing to their distinguished advantages such as naturally bypassing immune recognition, intrinsic capability to navigate biological barriers, and access to hard-to-reach tissues via onboarding sensing and active motility. Over the past two decades, a large body of work has focused on understanding the ability of cell carriers to breach biological barriers and to modulate drug pharmacokinetics and pharmacodynamics. These efforts have led to the engineering of various cells for tissue-specific drug delivery. Despite exciting advances, clinical translation of cell-based drug carriers demands a thorough understanding of the pressing challenges and potential strategies to overcome them. Here, we summarize recent advances and new concepts in cell-based drug carriers and their clinical translation. We also discuss key considerations and emerging strategies to engineering the next-generation cell-based delivery technologies for more precise, targeted drug delivery.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas , Humanos , Portadores de Fármacos , Ingeniería , Tecnología
16.
Bioeng Transl Med ; 8(1): e10367, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36684083

RESUMEN

Alzheimer's disease (AD) and Parkinson's disease (PD) are the most prevalent neurodegenerative diseases, affecting millions and costing billions each year in the United States alone. Despite tremendous progress in developing therapeutics that manage the symptoms of these two diseases, the scientific community has yet to develop a treatment that effectively slows down, inhibits, or cures neurodegeneration. To gain a better understanding of the current therapeutic frontier for the treatment of AD and PD, we provide a review on past and present therapeutic strategies for these two major neurodegenerative disorders in the clinical trial process. We briefly recap currently US Food and Drug Administration-approved therapies, and then explore trends in clinical trials across the variables of therapy mechanism of disease intervention, administration route, use of delivery vehicle, and outcome measures, across the clinical phases over time for "Drug" and "Biologic" therapeutics. We then present the success rate of past clinical trials and analyze the intersections in therapeutic approaches for AD and PD, revealing the shift in clinical trials away from therapies targeting neurotransmitter systems that provide symptomatic relief, and towards anti-aggregation, anti-inflammatory, anti-oxidant, and regeneration strategies that aim to inhibit the root causes of disease progression. We also highlight the evolving distribution of the types of "Biologic" therapies investigated, and the slowly increasing yet still severe under-utilization of delivery vehicles for AD and PD therapeutics. We then briefly discuss novel preclinical strategies for treating AD and PD. Overall, this review aims to provide a succinct overview of the clinical landscape of AD and PD therapies to better understand the field's therapeutic strategy in the past and the field's evolution in approach to the present, to better inform how to effectively treat AD and PD in the future.

17.
Bioeng Transl Med ; 8(1): e10374, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36684099

RESUMEN

Ribonucleic acid (RNA) therapeutics are being actively researched as a therapeutic modality in preclinical and clinical studies. They have become one of the most ubiquitously known and discussed therapeutics in recent years in part due to the ongoing coronavirus pandemic. Since the first approval in 1998, research on RNA therapeutics has progressed to discovering new therapeutic targets and delivery strategies to enhance their safety and efficacy. Here, we provide an overview of the current clinically relevant RNA therapeutics, mechanistic basis of their function, and strategies to improve their clinical use. We discuss the 17 approved RNA therapeutics and perform an in-depth analysis of the 222 ongoing clinical trials, with an emphasis on their respective mechanisms and disease areas. We also provide perspectives on the challenges for clinical translation of RNA therapeutics and suggest potential strategies to address these challenges.

18.
Pharm Res ; 39(11): 2673-2698, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35794397

RESUMEN

In the past five decades, red blood cells (RBCs) have been extensively explored as drug delivery systems due to their distinguishing potential in modulating the pharmacokinetic, pharmacodynamics, and biological activity of carried payloads. The extensive interests in RBC-mediated drug delivery technologies are in part derived from RBCs' unique biological features such as long circulation time, wide access to many tissues in the body, and low immunogenicity. Owing to these outstanding properties, a large body of efforts have led to the development of various RBC-inspired strategies to enable precise drug delivery with enhanced therapeutic efficacy and reduced off-target toxicity. In this review, we discuss emerging concepts and new advances in such RBC-inspired strategies, including native RBCs, ghost RBCs, RBC-mimetic nanoparticles, and RBC-derived extracellular vesicles, for drug delivery.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas , Eritrocitos , Nanopartículas/uso terapéutico , Preparaciones Farmacéuticas
19.
Adv Sci (Weinh) ; 9(24): e2201293, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35780495

RESUMEN

Adeno-associated virus (AAV)-mediated gene therapy is a promising therapeutic modality for curing many diseases including monogenic diseases. However, limited tissue-targeting and restricted re-administration due to the vector immunogenicity largely restrict its therapeutic potential. Here, using a red blood cell (RBC) as the carrier vehicle for AAV is demonstrated to improve its tissue-targeted transduction and enable its re-administration. Anchoring AAV to the RBC surface minimally affected its infectability toward endothelial cells. Meanwhile, AAV anchored onto RBCs is predominantly delivered to and shows efficient transduction in the lungs by virtue of the biophysical features of RBCs. RBC-anchored AAVs lead to a four- to five-fold enhancement in target gene expression in the lungsas compared to free AAVs following a single- or dual-dosing regimen. While RBC anchoring does not prevent the induction of adaptive immune responses against AAV, it results in successful transgene expression upon re-administration following prior AAV exposure. The ability to re-administer is partially attributed to the delayed and reduced AAV neutralization by neutralizing antibodies, resulting from the combination of limited exposure of physically confined AAVs and the short time required to reach the lungs. This study's findings suggest that the RBC-mediated approach is a promising strategy for repetitive, targeted AAV gene therapy.


Asunto(s)
Dependovirus , Vectores Genéticos , Dependovirus/genética , Células Endoteliales , Eritrocitos , Terapia Genética
20.
J Nanobiotechnology ; 20(1): 333, 2022 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-35842697

RESUMEN

Red blood cell (RBC) hitchhiking has great potential in enhancing drug therapy, by improving targeting and reducing rapid clearance of nanoparticles (NPs). However, to improve the potential for clinical translation of RBC hitchhiking, a more thorough understanding of the RBC-NP interface is needed. Here, we evaluate the effects of NP surface parameters on the success and biocompatibility of NP adsorption to extracted RBCs from various species. Major differences in RBC characteristics between rabbit, mouse and human were proven to significantly impact NP adsorption outcomes. Additionally, the effects of NP design parameters, including NP hydrophobicity, zeta potential, surfactant concentration and drug encapsulation, on RBC hitchhiking are investigated. Our studies demonstrate the importance of electrostatic interactions in balancing NP adsorption success and biocompatibility. We further investigated the effect of varying the anti-coagulant used for blood storage. The results presented here offer new insights into the parameters that impact NP adsorption on RBCs that will assist researchers in experimental design choices for using RBC hitchhiking as drug delivery strategy.


Asunto(s)
Nanopartículas , Adsorción , Animales , Sistemas de Liberación de Medicamentos/métodos , Eritrocitos , Humanos , Ratones , Nanopartículas/uso terapéutico , Polímeros/farmacología , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...